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USE OF A NONLINEAR THERMAL REFLECTION EFFECT
TO CONTROL SPATIAL IRRADIANCE DISTRIBUTION

A. N. VASILYEV and A. V. SHEPELEV

Abstract—The reflection factor at the interface between two media can be controlled by heating with an
auxiliary illuminating beam. Analytical expressions are derived for the temperature of the interface under
instantaneous and stationary heating. For the case of stationary heating, the inverse transform expression
is obtained. It indicates a practical possibility for realizing virtually any spatial distribution of the reflection
factor.

The effect of nonlinear thermal reflection (NTR) is essentially a variation of reflectance due to a
thermal nonlinearity induced by radiation striking the interface between two media. It has been
studied in depth both theoretically and experimentally [1-5]. Under NTR, reflection readily fits
a hysteresis mode, and interferometers with thermal nonlinearity exhibit a bistable mode.
Applications reported for NTR include Q-switching [1, 6], optical shutters [3] and optical flip-flops
[5].

Chernov and Shepelev [1] and Zuev et al. [7] suggested that the effect of NTR should be used
to control the spatial distribution produced by irradiance equipment. Such devices are much needed
in adaptive optics and optoelectronics.

In this paper we present exact solutions for two more important situations of harnessing NTR
to control the spatial distribution of irradiance. We perform also a numerical analysis of reflecting
type transparencies.

If the temperature of an isotropic medium changes by AT, and the density by Ap, the refractive

index varies by
An=<a—n> AT+<@) Ap. 1)
T/, oo/t

The temperature of the media that form the interface is described by a system of heat transfer
equations, which in the frequent case of radial symmetry has the form
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The associated boundary conditions of the fourth kind are
Ty(r,0,t)=T,(r,0,1),

0Ty(r,0,t) 4, 0Ty(r,0,1) 3)
z A z ’

where a, , is the thermal diffusivity, c is the heat capacity and 4, , is the thermal conductivity.

The right-hand side of the first equation in (2) describes the heating of medium 2 by a radiant
flux I(r, t). The distribution of the irradiance over the z axis is given by the Bouguer exponential
¢~ %, and the factor R(T, p, t) takes into account the reflection factor.

Equations (1) and (2) taken together with the boundary conditions (3), initial conditions and
the state equation form a closed system that is sufficient to define the temperature and the reflection
factor. This rather complex problem has not been solved in its general form. Important particular
solutions corresponding to the one-dimensional problem in the limiting cases of short and long
time have been investigated by Chernov and Shepelev [1] and Boiko et al. [2].

The following investigation is focused on the three-dimensional problem with radial symmetry
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Fig. 1. Control of the reflection factor for beam I, by radiation I(r, t) reflected from the interface between
absorptionless medium 1 and absorbing medium 2.

using the approximation of an instantaneous propagation of sound, i.e. for times not higher than
I/v, where | is the minimum dimension of the heated region and v is the velocity of sound. Under
the circumstances, the refractive index is controlled solely by temperature and Eq. (1) reduces to

A= AT, @)
dT

Le. at each point the refractive index is a function of temperature. Where the temperature varies
slowly over the wavelength, which corresponds to the actual situation, the reflection factor is
described by the ordinary Fresnel formulae.

Consider the case of external heating (Fig. 1) in which the variation of the temperature relief
and consequently the reflection factor for beam I, is controlled by the radiant flux I(r). The
reflectance coefficient for the heating beam I(r) is practically independent of temperature because
of almost normal incidence of this irradiance on the interface [1].

In the stated approximation, R = 1.

() I(r,t)= E(r)d(z), instantaneous heating
The solution of the system of equations (2) subject to (3) was obtained by sequential application
of the Laplace and Hankel transformations, viz.,

Ty 2(r 2, 8) > Ty 50 (r, 2,8) > Ty 5u(é, 2, 8) = Y, 5.
L H

The transforms carry the system of partial differential equations for T(r, z, t) to the system of linear
differential equations in Y, ,

sY, —e™"H = a,(— £2Y, + d?Y,/dz?),
sY, = a,(—&2Y, +d?Y,/dz?),
related by the conditions
Y,(0) = 1,(0),
710)= 2 Y30,

1

Solving this system and performing the inverse transformations of Hankel and Laplace at z=0,
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Fig. 2. Temperature distributions at a =4 x 10~2 cm? s~ ! for different values of at and 6. (a) ¢ = 30 cm ™!

(1) at=0, (2) at=10"*cm?, (3) at=10"3cm?, (4) ar=10"2cm?. (b) o =0.1cm"*: (1) at=0, (5)
at=1cm?, (6) at = 10 cm?,

we obtain the expression for temperature at the interface

T(r, t)=iJ‘°° ds on d H(l —-0'/52 +s/a1)Jo(§r) exp(st) , (5)
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where

and J, is the Bessel function.
At a, , = a, for a Gaussian distribution of intensity

I(r,t)= % exp(—r2/2p®)é(t)

the solution takes the form

— g2 2
T(r.1)=(p?+ar)™* W [1 - ¢(o\/at)] exp —[m}
2/ 71

The reflection factor is determined from the above expression for temperature, Eq. (4) and
Fresnel’s formulae. Figure 2 shows the radial temperature distributions at various instants in time
for Bouguer’s linear absorption coefficients of 30 cm ™! at (a) and 0.1 cm ™! at (b). For6 =30 cm ™!
the dynamic behaviour of the reflection factor is controlled mainly by the transport of heat normal
to the interface, and the profile of reflection factor remains practically the same. Thus at
a=4x 1073 cm? s~ !, which corresponds to the actual values, a sizeable change in reflection factor
occurs in 10 ms for 6 =30cm™! and in 10s for 6 =0.1cm ™!,

(ii) I(r, t) = I(r), stationary heating
In the stationary case, the time derivatives in (2) vanish and the initial conditions are irrelevant.
The expression for the stationary distribution of temperature derived similar to (5) has the form

rH(S)
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= ac + 2l0y) f oy olnds

T(r)
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Fig. 3. Distributions of reflection factor and temperature in stationary heating for a Gaussian distribution
of beam I(r) (p = 1 cm and ¢ = 30 cm ') and different powers of the heating beam. (1) 1 W, (2) 3 W, (3)
10 W, (4) steady-state temperature profile.

This expression is the solution of the inverse problem concerned with the evaluation of an intensity
distribution which induces a given distribution of temperature T (r). The integral (6) exists for a
wide class of functions T(r). Because the temperature uniquely defines the reflection factor the
existence of (6) implies that one may furnish the necessary distribution of heating intensity to realize
a given transparent element.

The settling time to a steady-state distribution of temperature is defined by the temperature
diffusivity a, and the geometry of the problem. For high absorption, this time is in the order of
r2/a,, where r, is the typical radius of the “soft” aperture.

The stationary heating behaviour is illustrated in Fig. 3 depicting the stationary distribution of
reflection factor needed for different radiant powers and the profile of the steady-state temperature
distribution. The s-polarized heating radiation has been assumed to have a Gaussian profile, the
angle of incidence being 67°, i.e. 0.8° short of the angle for total internal reflection.

In summary, the effect of nonlinear thermal reflection allows one to realize a transparent element
with any given transmittance profile that can be varied in time. The evidence obtained in this study
may be readily extended to the case of an interferometer with thermal nonlinearity.
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